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Electromagnetic Device Performance Identification Using Knowledge Based Neural
Networks

Abstract—A knowledge based artificial neural network
which represents the design equations of an electromagnetic
device is described. The network architecture is based on a rule
set developed from a simple algebraic model of the device. The
system is then revised by using numerical solutions as training
sets to remove the assumptions built in by the algebraic system.

Index Terms—Neural Networks, Electromagnetic Device,
Performance Identification.

I. INTRODUCTION

Understanding the characteristics and performance of an
electromagnetic device is crucial to the design process.
Often, a designer can gain valuable insight by using a simple
algebraic model. While this wusually makes major
assumptions, such as linearity of material characteristics, a
lack of fringing, etc., the major characteristics of a device

can be seen. Moreover, the effects of changes in one

parameter on the performance of the device can be evaluated
quickly. It is the understanding of the "shape" of the design
space which enables a designer to move rapidly towards an
optimal solution. The term "shape” is used here to identify
the effect on an output (i.e. increase, decrease or none) of a
change in one or more inputs. Given this information, the
designer can make intelligent decisions as to how to find an
optimal solution and how sensitive this solution might be to
small parameter changes. These simple models, however, are
limited in their applications and thus, ultimately,
experimental models have been traditionally used to derive
performance characteristics of a class of device. This is both
slow and expensive and impractical in many modern design
environments.

As numerical analyses become more prevalent, they
provide a method of replacing the experimental laboratory
tests. The accuracy, though, is obtained at a cost of often
lengthy computation times. In addition, such systems only
provide descriptions of single points in the design space,
much in the way that physical experiments do, and do not
provide the designer with the same "feel" for the device as
can be achieved with an analytical model. There are several
possible solutions to this slow response time and all require
an exploration of the design space "offline" followed by the
construction of an appropriate model. The simplest method
of doing this is to construct a look up table and use linear
interpolation to estimate the output for a given input [1].
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This tends to be limited in terms of the number of
parameters which can be considered. A second approach is
to use a response surface method where a high order surface
is fitted to a set of experimental results [2]. While this can
handle a larger range of parameters, it requires considerable
expertise in the construction of the surface. A third approach
is to use a conventional feed forward neural network to
"learn" the surface. This requires many offline experiments
followed by long training times. All of these approaches,
however, predict output values, not the directions of changes
in the outputs that is really required for -effective
optimization.

While the algebraic model often makes many
assumptions, it can provide a form of qualitative reasoning
which can guide an optimization process. An earlier -
proposal to make use of this information used a constraint
based model to provide a fast design tool for examining the
effects of parameter changes [3]. The intention of this paper
is to show how the information encoded in an algebraic
model can be used to develop a set of design rules that can be
transferred to a neural network structure. By encoding the
information from the algebraic model directly in the
structure of the neural network, the training time can be
considerably reduced, as can the number of training sets. In
fact, the "experimental” results from the numerical analysis
system are used to fine tune the network to remove some of
the assumptions built into the original model. This network
can then be used to guide a conventional optimization
process, thus considerably reducing the computation time
needed to achieve a design. As an added benefit, the system
can show a designer why certain choices were made.

To gauge the effectiveness of this approach, the
Knowledge Based Artificial Neural Network (KBANN)
derived from the initial equations is compared with a
network developed by a conventional training method and a
set of tests is performed on both architectures.

II. AN ALGEBRAIC MODEL AND THE DERIVATION OF RULES

The example to be considered in the paper is that of a
simple C-Core inductor (Fig. 1). The parameters shown in
the figure and listed in Table I below (with the exception of
I, R and F) may be considered as structural and these are the
ones that the designer can manipulate in order to achieve the
required performance. The performance of the device is
given in terms of design parameters; in this case these are
the terminal resistance, R, the input current, /, and the
generated force, F.
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Fig. 1. A Simple C-Core Actuator.

Using a simple magnetic circuit model, a set of algebraic
equations can be created which relates the input current, the
geometric structure and the coil architecture to the fluxes in
the system and the force generated. This ideal device model
assumes that:

1) Magnetic materials are not saturated

2) There is no fringing.

3) Design parameters are all independent of each other.
The resulting set of equations is shown below (1),(2),(3):

R = 2'p]\,(l‘core + Ldev)/awire ¢y
I= Vawire/ (2:0N (Lcore + Ldev )) (2)
F= /ro 2awireLpoleLdev/(32’p2g2 (Lcore + Ldev)z) €)

From this set of equations, the derivatives of each of the
design parameters with respect to the structural parameters
can be obtained leading to a description of how a change in
one parameter can affect the others. For example, the length
of the core (L .oe) affects R according to the following
equation:

*
R __2p*N @)
aLwre Ayire
TABLEI
THE BASIC SET OF PARAMETERS
Parameter Description
Structural
g Air gap between core and armature
N Number of turns of the coil
% Voltage applied to the coil
L core Length of the core
a wire Area of the wire used for the coil
L pole Length of the pole
L gev Length of the device in the Z plane,
Design
F Force
1 Current in the coil

R Resistance of the coil

This process results in a set of fourteen partial differential
equations describing the model. Since p, N and gy, must be
non-negative numbers, (4) implies that R and L. change
together - an increase in L. implies and increase in R. The
set of equations can be re-expressed as a set of trend rules.

In moving the design of a device towards the desired
performance, the required inputs are whether a parameter is
too large, too small or within range. Thus, the trend rules
have inputs, which consider the current state of a parameter,
and outputs, which are commands to change a parameter.
There are four sources of knowledge are available: the input
state of each structural parameter itself and the state of R, [
and F. Each structural parameter can generate an output
command applying to itself as follows:

e If(Xistoo small) then (increase X)

o If(Xistoo large) then (decrease X)

This set of commands is needed to allow the imposition
of design constraints such as the width of the core cannot
exceed a particular value.

Next, in order to relate the input states of F, I and R to
output commands, the set of trend rules described above has
to be analyzed. This is done by examining the sign of the
equations and mapping it onto a symbolic representation of
the relationships between the parameters. For instance:

e If(Ris too small) then (increase Lecore)

o If(Ristoo large) then (decrease L;,y.)

It is possible that, in the application of the trend rules to
an existing design state, commands will be issued to both
increase and decrease a parameter simultaneously. Such a
condition might occur where there is a need to increase the
force which, in turn, implies and increase in the cross-
sectional area of the pole but the pole area already exceeds
constraints placed on the physical dimensions. In this
situation, a conflict is flagged and the information is passed
to a decision module to determine if a change should be
allowed. The conflict bit is obtained simply by ANDing the
(Increase X) and the (Decrease X) commands. If both are
true, then a conflict is detected.

After simplification, a set of 21 symbolic rules acting on
20 input symbols and giving 21 outputs is obtained. The
input symbols come from the seven structural parameters
plus the Force, Current and Resistance (1), (2), (3) and each
parameter has two inputs - "too big" and a "too small". The
21 output symbols consist of three for each structural
parameter - increase, decrease and conflict.

The complete set of trend and conflict rules could be
implemented in a traditional rule based system. However,
such a system would only operate within the parameters of
the original simple algebraic model with all its simplifying
assumptions. The intention here is to construct a Knowledge
Based Artificial Neural Network (KBANN) [4], [5], [6], [7],
[8], to implement the rules instead, and then, to retrain the
network to remove the assumptions by using a two-
dimensional, finite element based, numerical model that
provides training data, which include the effects of non-
linearity, fringing, etc [9].



/—

Summing Neuron Sigmoidal Activation

Fig. 2. A Single Neuron.

III. A KNOWLEDGE BASED ARTIFICIAL NEURAL NETWORK

The symbolic rules derived from the algebraic model can
be used to create a backpropagation neural network, whose
topology and initial connection weights are based on the
rules rather than being arbitrarily chosen. A single neuron of
the network is shown in Fig. 2. A weighted sum of the inputs
to the neuron is created and then passed through a sigmoidal
activation function to generate an output between 0 and 1.
The complete structure is created by mapping the
dependencies present in the rules onto a network topology.
The resulting structure implements the qualitative effects of
the algebraic model. While the network is fully
interconnected, in fact, only those connections relating to the
symbolic rules are non-zero initially.

The network can now be refined, i.e. modified, through
learning by using empirical information obtained from a
numerical simulation of the device. This allows real world
effects such as magnetic saturation and field fringing to be
superimposed on the original algebraic system. Training data
(Empirical Knowledge) is obtained from an electromagnetic
device analysis package [9] by varying each of the structural
parameters independently over a wide range of values. The
training samples are then obtained by examining the changes
in the design parameters for each change in the structural
parameters. The sign of the change (positive or negative) can
then be mapped onto the concepts of input state and output
commands.

Using the KBANN methodology, the resulting network
has 4 layers (1 input, 2 hidden and 1 output) containing 20,
28, 28 and 21 neurons, respectively. This results in a total of
1932 weights to be computed in the final training although
less than 10% of these are non-zero in the initial creation of
the network. The starting values of the non-zero weights are
all set equal to a pre-determined level, W.

As a reference to compare performance, a conventional
backpropagation neural network has also been implemented.
Its topology was adjusted experimentally until a performance
equivalent to the KBANN was achieved. It has 3 layers
containing 20, 9 and 21 neurons respectively, giving a total
of 369 weights. Note that the KBANN is considerably larger
than the reference network. It possesses 47 more neurons
and 5.2 times more connection weights. Note that both
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networks are using the same neuron structures, i.¢. summing
neurons thresholded on their outputs.

IV. TRAINING THE NETWORK

After an analysis of the terminal parameters with respect ‘

_ to design parameters, the training and testing sets were

carefully chosen to include regions in the design space where
saturation was critical and others where it did not exist.
Because KBANN is based on a model of the device that
assumes no saturation, the proportion of samples taken from
the saturation region was over-represented (40%) in order to
facilitate learning by compensating for the bias towards non-
saturated regions. The training set contains 2450 samples
and the testing set, 600. Subsets containing samples from the
saturation or non-saturation regions were also considered.
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Fig. 3. Analysis of Saturation with respect to the Airgap (g).

Because of the difficulty of extracting conflict information
from the empirical data for this model, only non-conflicting
samples were used to train the network.

V. EXPERIMENTS

The first experiment performed on the KBANN was to
evaluate the effect of the parameter W, the initial connection
weight. Larger values mean that the symbolic knowledge is
more strongly encoded, resulting in a better performance on
data samples corresponding to the device model, i.e. non-
saturated regions. Since large weights tend to saturate the
sigmoid activation function elements (i.e. where the slope is
small), learning of saturation samples is more difficult and
the generalization ability is also globally reduced. On the
other hand, small values of W generate a network that does
not exploit the full potential of symbolic knowledge (i.e.
rules). Sample results are presented in Table II.

As can be seen, the optimum trade-off was W=4.0 for this
problem, and was used for all subsequent experiments. This
corresponds to the value suggested by Shavlik [5].

TABLE I
KBANN TRAINING PERFORMANCE WITH W

|4 Training Error on testing set
3.0 86 epochs 0.044
40 73 epochs 0.042

5.0 76 epochs 0.044
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TABLE III
A COMPARISON BETWEEN KBANN AND THE REFERENCE NETWORK
KBANN Reference Network
Training 73 epochs 219 epochs
Residual Error 0.40% 0.40%
(on Training Set)
Error on testing sets
Full 0.042 0.049
Saturation only 0.014 0.0056
Non-saturation only  0.058 0.072

VI. PERFORMANCE COMPARISONS

Table 111 presents a summary of the results obtained from
KBANN and the reference network. Despite the fact that the
training is 3 times shorter, KBANN is overall more
computationally expensive to train, because of the larger
number of connection weights. For the same reason, recall is
more expensive on KBANN.

However, despite its additional complexity, the KBANN
did not suffer from local minimum problems during training.
An analysis of the average variation of weights shows that
the initial point in the search space determined by the
KBANN methodology is a good estimate of the final
solution, and therefore the training phase involves less
weight variations.

The last experiment allows the determination of what the
trained neural networks have actually learned. For this
purpose, a rule extraction process is performed. Each
possible input state (e.g. gap is too large) is individually
applied to the network (20 cases) then the output is
computed and passed through a threshold operator. Only
significant values are kept. Table IV presents the results for
a subset of 5§ parameters. :

As can be seen, KBANN has acted as a “Rule Optimizer”
by pruning 45% of the initial rules. This is explained by the
fact that the training set contained only non-conflicting data.

On the other hand, the reference neural network did
significantly worse. It was only able to learn 15% of the
relationships described in the ideal C-core model, while also
learning spurious relationships (15%).

This experiment shows that KBANN performs much
better in the presence of an incomplete training set because
the symbolic knowledge used to build it sets a better initial
point to start exploring the search space.

Thus, in situations where a complete set of training data

TABLE IV

RULE OPTIMIZATION BY KBANN
Parameter  Retained Rule Deleted Rule Ratio

QOccurrences Occurrences
g 2 0 100%
Vv 3 1 75%
a wire 3 3 50%
N 1 3 25%
Lyev 0 4 0%
Total 9 11 45%

is either difficult to obtain or costly, or both, but some
amount of formal design knowledge exists, the KBANN
approach may prove to be both efficient and effective.

In summary, the strength of KBANN resides in a
Symbolic Conceptualization of the problem, associated with
a neural network implementation that adds learning
capacities.

VII. CONCLUSIONS

The major advantage of the KBANN was that, even after
training, it maintained a large proportion of the knowledge
used to construct it thus, it performed better than the
conventional network in the non-saturated region, i.e. where
the problem matched the algebraic assumptions.

However, the main limitations of the method are:

Generated networks are not minimal in size (number of
layers and neurons) and also have a fixed size for a
particular problem. However, KBANN partially removes the
need to determine an optimal neural network structure for a
particular problem.

The computational cost to obtain the output in the recall
phase) is directly proportional to the number of connection
weights. This makes KBANN-generated networks less
computationally efficient to use.

It learns new or implicit knowledge representations or
associations contained in exceptions less easily. The internal
representation is biased towards the symbolic representation
of the ideal model.

In terms of performance, KBANN makes a trade-off
between retention of non-saturated regions and learning
saturation data. Generally, a better error rate on one results
in a worse one on the other.
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